Application of the Arima Model for Stock Price Prediction of PT Adaro Energy Tbk: A Time Series Analysis during the Energy Transition Period

Main Article Content

Faiz Zamzami
Azzahra Ramadhani
Azizah Nurul Putri
Wahyuni Windasari

Abstract

This study examines the stock price movements of PT Adaro Energy Tbk (ADRO) using the Autoregressive Integrated Moving Average (ARIMA) model, with a particular focus on the energy transition period. Employing daily closing price data from December 27, 2023, to December 24, 2024, this research utilizes a quantitative time series approach to develop a robust predictive model. The analysis results indicate that the ARIMA (2,1,0) model demonstrates the best performance based on the Sum of Squared Errors (SSE), Akaike Information Criterion (AIC), and Schwarz Information Criterion (SIC). This model effectively captures stock price movement patterns, including significant volatility observed during the business unit spin-off period. The forecast for the next 20 periods suggests a stable trend with a satisfactory level of accuracy. These findings offer valuable insights for investors and analysts in understanding the stock price dynamics of energy companies undergoing business transformations.

Downloads

Download data is not yet available.

Article Details

How to Cite
Zamzami, F. ., Ramadhani, A. ., Putri, A. N. ., & Windasari, W. . (2024). Application of the Arima Model for Stock Price Prediction of PT Adaro Energy Tbk: A Time Series Analysis during the Energy Transition Period. Symmetry & Sigma: Journal of Mathematical Structures and Statistical Patterns, 1(2), 99-115. https://doi.org/10.58989/symmerge.v1i2.23
Section
Articles
Author Biography

Wahyuni Windasari, Universitas Putra Bangsa

Master of Science in Statistics

Department of Data Science, Universitas Putra Bangsa Kebumen, Indonesia

(Sinta ID: 6647012; Google Scholar ID: NOq8FwsAAAAJ&hl)

How to Cite

Zamzami, F. ., Ramadhani, A. ., Putri, A. N. ., & Windasari, W. . (2024). Application of the Arima Model for Stock Price Prediction of PT Adaro Energy Tbk: A Time Series Analysis during the Energy Transition Period. Symmetry & Sigma: Journal of Mathematical Structures and Statistical Patterns, 1(2), 99-115. https://doi.org/10.58989/symmerge.v1i2.23

References

Journals

Aznarte, J. L., Medeiros, M. C., & Benítez, J. M. (2010). Testing for Remaining Autocorrelation of the residuals in the Framework of Fuzzy Rule-Based Time Series Modelling. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 18(4), 371–387. https://doi.org/10.1142/S021848851000660X

Devita, M., Nawawi, Z. M., & Aslami, N. (2021). Shopee’s E-Commerce Marketing Strategy in International Business. Journal of Social Research, 1(1), 27–31. https://doi.org/10.55324/josr.v1i1.3

Ilu, S. Y., & Prasad, R. (2023). Improved Autoregressive Integrated Moving Average Model for COVID-19 Prediction by Using Statistical Significance and Clustering Techniques. Heliyon, 9(2), 1–12. https://doi.org/10.1016/j.heliyon.2023.e13483

Irawan, W. (2019). Peramalan Harga Saham PT.Unilever Tbk dengan Menggunakan Metode ARIMA. Jurnal Matematika Unand, 4(3), 80–89. https://doi.org/10.25077/jmu.4.3.80-89.2015

Julian, R., & Pribadi, M. R. (2021). Peramalan Harga Saham Pertambangan Pada Bursa Efek Indonesia (BEI) Menggunakan Long Short Term Memory (LSTM). Jurnal Teknik Informatika Dan Sistem Informasi, 8(3), 1570–1580. https://doi.org/https://doi.org/10.35957/jatisi.v8i3.1159

Kaur, J., Parmar, K. S., & Singh, S. (2023). Autoregressive Models in Environmental Forecasting Time Series: A Theoretical and Application Review. Environmental Science and Pollution Research, 30, 19617–19641. https://doi.org/10.1007/s11356-023-25148-9

Maulidya, G. A., Satyahadewi, N., & Huda, N. M. (2024). Analisis Autoregressive Integrated Moving Average (ARIMA) dengan Intervensi Double Input pada Prediksi Harga Saham. Indonesian Journal of Applied Statistics, 7(1), 60–72. https://doi.org/10.13057/ijas.v7i1.85229

Montgomery, A., Spânu, F., Băban, A., & Panagopoulou, E. (2017). Job demands, burnout, and engagement among nurses: A multi-level analysis of ORCAB data investigating the moderating effect of teamwork. Burnout Research, 2(2), 71–79. https://doi.org/10.1016/j.burn.2015.06.001

Muis, S., & Setiyadi, D. (2020). Model Statistik Arima Dalam Meramal Pergerakan Harga Saham. Information System for Educators and Professionals: Journal of Information System, 4(2), 154–167. https://ejournal-binainsani.ac.id/index.php/ISBI/article/view/1295

Mustapa, F. H., & Ismail, M. T. (2019). Modelling and forecasting S&P 500 stock prices using hybrid Arima-Garch Model. Journal of Physics: Conference Series, 1–14. https://doi.org/10.1088/1742-6596/1366/1/012130

Nurfajriyah, R. S., Harjadi, D., & Adzimatinur, F. (2024). Analisis Perbandingan Metode Arch dan Garch dalam Peramalan Indeks Harga Saham. Jurnal Ilmiah Manajemen, Ekonomi Dan Bisnis, 1(2), 148–159. https://journal.feb.uniku.ac.id/jimeb/article/view/70

Rahmawati, Y. F., Zukhronah, E., & Pratiwi, H. (2021). Penerapan Model ARIMA-ARCH untuk Meramalkan Harga Saham PT. Indofood Sukses Makmur Tbk. Business Innovation & Entrepreneurship Journal, 3(3), 171–177. https://doi.org/10.35899/biej.v3i3.307

Rizki, M. I., Ammar, T., Fitriyani, F., & Fasya, S. (2021). Peramalan Indeks Harga Saham PT Verena Multi Finance Tbk Dengan Metode Pemodelan ARIMA Dan ARCH-GARCH. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 14(1), 11–23. https://doi.org/10.36456/jstat.vol14.no1.a3774

Rusminto, M. Z., Wibowo, S. A., & Wahyuni, F. S. (2024). Peramalan Harga Saham Menggunakan Metode Arima (Autoregressive Integrated Moving Average) Time Series. Jurnal Mahasiswa Teknik Informatika, 8(2), 1263–1270. https://doi.org/10.36040/jati.v8i2.9089

Zhu, B., & Wei, Y. (2013). Carbon Price Forecasting with A Novel Hybrid ARIMA and Least Squares Support Vector Machines Methodology. Omega, 41(3), 517–524. https://doi.org/10.1016/j.omega.2012.06.005

Web Pages

Yahoo. (2024). PT Alamtri Resources Indonesia Tbk (ADRO.JK). Yahoo!Finance. https://finance.yahoo.com/quote/ADRO.JK/history/