Gold Stock Price Prediction: Arima Time Series Analysis of PT Antam Tbk

Main Article Content

Azril Rabbani Hawa
Dian Nur Safitri
Eka Prasetianingsih
Augistri Putri Pradani

Abstract

Stock investment is a popular choice for securing future financial stability due to its long-term income potential. Shares of PT Antam Tbk (Antam), commonly referred to as gold stocks, exhibit a strong correlation with gold prices, particularly during periods of global economic and geopolitical uncertainty. This study aims to forecast stock prices using the ARIMA (Auto Regressive Integrated Moving Average) time-series model, considering the role of gold as a global currency. The data utilized in this study includes stock prices and relevant influencing factors, such as gold prices and global socio-economic conditions. The analysis results indicate that the ARIMA (5, 2, 0) model is the most suitable for forecasting stock prices, as it yields the lowest Akaike Information Criterion (AIC) value of 0.151031. This model effectively captures significant patterns and trends in the data, making it a reliable tool for predicting future stock prices. The forecast suggests that stock prices are expected to increase over the next 12 months, with an estimated value reaching approximately 1,880.554 by the end of the period.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hawa, A. R. ., Safitri, D. N. ., Prasetianingsih , E. ., & Pradani, A. P. . (2024). Gold Stock Price Prediction: Arima Time Series Analysis of PT Antam Tbk. Symmetry & Sigma: Journal of Mathematical Structures and Statistical Patterns, 1(2), 116–131. https://doi.org/10.58989/symmerge.v1i2.25
Section
Articles

How to Cite

Hawa, A. R. ., Safitri, D. N. ., Prasetianingsih , E. ., & Pradani, A. P. . (2024). Gold Stock Price Prediction: Arima Time Series Analysis of PT Antam Tbk. Symmetry & Sigma: Journal of Mathematical Structures and Statistical Patterns, 1(2), 116–131. https://doi.org/10.58989/symmerge.v1i2.25

References

Journals

Amri, I. F., Astuti, S. A., Sulistiya, I., Suherdi, A., & Haris, M. Al. (2024). Peramalan Harga Emas Antam Menggunakan Metode Generalized Autoregressive Conditional Heterokedasticity (GARCH). Unisda Journal of Mathematics and Computer Science, 10(1), 26–35. https://doi.org/10.52166/ujmc.v10i1.4679

Crafts, N., & Fearon, P. (2010). Lessons from the 1930s Great Depression. Oxford Review of Economic Policy, 26(3), 285–317. https://doi.org/10.1093/oxrep/grq030

Demirel, H. C., Leendertse, W., & Volker, L. (2023). Mechanisms for Protecting Returns on Private Investments in Public Infrastructure Projects. International Journal of Project Management, 40(3), 155–166. https://doi.org/10.1016/j.ijproman.2021.11.008

Dewi, D. M., Nafi’, M. Z., & Nasrudin, N. (2022). Analisis Peramalan Harga Emas di Indonesia pada Masa Pandemi Covid-19 untuk Investasi. Jurnal Litbang Sukowati: Media Penelitian Dan Pengembangan, 5(2), 38–50. https://doi.org/10.32630/sukowati.v5i2.235

Faraga, F., Chabachib, M., & Muharam, H. (2017). Analisis Pengaruh Harga Minyak dan Harga Emas terhadap Hubungan Timbal-Balik Kurs dan Indeks Harga Saham Gabungan (IHSG) di Bursa Efek Indonesia (BEI) 2000 -2013. Jurnal Bisnis Strategi, 21(1), 72–94. https://doi.org/10.14710/jbs.21.1.72-94

Greunen, J. Van, Heymans, A., University, N.-W., Heerden, C. Van, & Vuuren, G. van. (2014). The Prominence of Stationarity in Time Series Forecasting. Studies in Economics and Econometrics, 38(1), 1–16. https://doi.org/10.1080/10800379.2014.12097260

Hasanudin, H., Suradi, R., Supriyanto, E., & Permadi, A. (2022). Dynamics of Gold Prices in Indonesia: A Short-Term and Long-Term Estimation Approach. Economics Social and Development Studies, 9(1), 21–41. https://doi.org/10.24252/ecc.v9i1.29325

Maryati, I., Christian, C., & Paramita, A. S. (2023). Gold Prices Time-Series Forecasting: Comparison of Statistical Techniques. Journal of Applied Data Sciences, 4(4), 372–381. https://doi.org/10.47738/jads.v4i4.135

Muis, S., & Setiyadi, D. (2020). Model Statistik Arima Dalam Meramal Pergerakan Harga Saham. Information System for Educators and Professionals: Journal of Information System, 4(2), 154–167. https://ejournal-binainsani.ac.id/index.php/ISBI/article/view/1295

Rahmawati, Y. F., Zukhronah, E., & Pratiwi, H. (2021). Penerapan Model ARIMA-ARCH untuk Meramalkan Harga Saham PT. Indofood Sukses Makmur Tbk. Business Innovation & Entrepreneurship Journal, 3(3), 171–177. https://doi.org/10.35899/biej.v3i3.307

Sinay, L. J., Tihurua, F. R. N., & Rahakbauw, D. L. (2018). Analisis Harga Saham PT. Antam Tbk Berdasarkan Harga Emas Dan Nilai Tukar Rupiah Terhadap Dolar Menggunakan Model Autoregressive Distributed Lag. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 12(1), 53–62. https://doi.org/10.30598/vol12iss1pp53-62ar364

Surya, B., Menne, F., Sabhan, H., Suriani, S., Abubakar, H., & Idris, M. (2021). Economic Growth, Increasing Productivity of SMEs, and Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 1–37. https://doi.org/10.3390/joitmc7010020

Widuhung, S. D. (2014). Perbandingan Return dan Risiko Investasi pada Saham Syariah dan Emas. Jurnal Al-Azhar Indonesia Seri Pranata Sosial, 2(3), 144–150. https://jurnal.uai.ac.id/index.php/SPS/article/view/166

Yeni, F., Pitoyo, R., & Afriany, A. (2024). What Are the Differentiating Factors between Investor and Shareholder Investment? Jurnal Riset Akuntansi Dan Keuangan, 12(2), 1050–1064. https://doi.org/10.17509/jrak.v12i2.70575

Report

PT Aneka Tambang Tbk. (2023). Memperkuat Fundamental Bisnis Menuju Perusahaan Global Terkemuka. https://www.antam.com/uploads/antam-ar2023.pdf