A Comparative Analysis of Exponential Smoothing Methods for Forecasting Poverty Data

Main Article Content

Dwi Retno Puspita Sari
Hanna Hilyati Aulia

Abstract

One of the primary challenges in enhancing a nation's welfare is the prevalence of poverty. This issue is also evident in Indonesia. According to data from the Central Statistics Agency (BPS) of Central Lampung, the poverty rate in Central Lampung Regency has shown a declining trend from 2005 to 2024. In this context, poverty is defined as the population whose average monthly expenditure falls below the regional poverty line. To anticipate potential increases in the number of people living in poverty, forecasting methods such as single exponential smoothing, double exponential smoothing, and triple exponential smoothing can be employed to estimate future poverty rates. Based on a comparative analysis of these three methods, the results indicate that the triple exponential smoothing method provides the highest predictive accuracy, with a Mean Absolute Percentage Error (MAPE) of 5.431, a Mean Absolute Deviation (MAD) of 10.502, and a Mean Squared Deviation (MSD) of 256.596. The projected poverty rate for the year 2025 using this method is 158.931.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sari, D. R. P. ., & Aulia, H. H. . (2025). A Comparative Analysis of Exponential Smoothing Methods for Forecasting Poverty Data. Symmetry & Sigma: Journal of Mathematical Structures and Statistical Patterns, 2(1), 1-16. https://doi.org/10.58989/symmerge.v2i1.32
Section
Articles
Author Biography

Dwi Retno Puspita Sari, Institut Agama Islam Negeri Metro

Master of Science in Statistics

Department of Sharia Economics, Institut Agama Islam Negeri Metro, Indonesia

(Sinta ID: 6868779)

How to Cite

Sari, D. R. P. ., & Aulia, H. H. . (2025). A Comparative Analysis of Exponential Smoothing Methods for Forecasting Poverty Data. Symmetry & Sigma: Journal of Mathematical Structures and Statistical Patterns, 2(1), 1-16. https://doi.org/10.58989/symmerge.v2i1.32

References

Journals

Adawiyah, S. El. (2020). Kemiskinan dan Fakor-Faktor Penyebabnya. Khidmat Sosial: Journal of Social Work and Social Services, 1(1), 43–50. https://jurnal.umj.ac.id/index.php/khidmatsosial/article/view/6336

Ensafi, Y., Amin, S. H., Zhang, G., & Shah, B. (2022). Time-Series Forecasting of Seasonal Items Sales Using Machine Learning: A Comparative Analysis. International Journal of Information Management Data Insights, 2(1), 1–16. https://doi.org/10.1016/j.jjimei.2022.100058

Ferezegia, D. V. (2018). Analisis Tingkat Kemiskinan di Indonesia. Jurnal Sosial Humaniora Terapan, 1(1), 1–6. https://scholarhub.ui.ac.id/jsht/vol1/iss1/1/

Israwati, W. O., Ruslan, R., & Djafar, M. K. (2024). Penerapan Metode Triple Exponential Smoothing Winter’s dalam Meramalkan Laju Inflasi: Metode Triple Exponential Smoothing Winter’s. Jurnal Matematika Komputasi Dan Statistika, 4(2), 719–728. https://doi.org/10.33772/jmks.v4i2.89

Lusiana, A., & Yuliarty, P. (2020). Penerapan Metode Peramalan (Forecasting) Pada Permintaan Atap di PT X. Industri Inovatif: Jurnal Teknik Industri, 10(1), 11–20. https://doi.org/10.36040/industri.v10i1.2530

Mahariani, Y. R., & Arifianti, E. R. (2025). Prediksi Harga Beras di Jawa Timur Menggunakan Metode Triple Eksponensial Smoothing. Multiple: Journal of Global and Multidisciplinary, 3(1), 4650–4657. https://journal.institercom-edu.org/index.php/multiple/article/view/893

Marizal, M. (2023). Analisis Anggaran Pendapatan dan Belanja Daerah Provinsi Riau. Kutubkhanah: Jurnal Penelitian Sosial Keagamaan, 23(1), 71–81. https://doi.org/10.24014/kutubkhanah.v23i1.18353

Ngurah Diksa, I. G. B. (2021). Peramalan Gelombang Covid 19 Menggunakan Hybrid Nonlinear Regression Logistic – Double Exponential Smoothing di Indonesia dan Prancis. Jambura Journal of Mathematics, 3(1), 37–51. https://doi.org/10.34312/jjom.v3i1.7771

Rasyid, R. M. A. K., Pambudi, A., & Santoso, B. (2025). Penerapan Metode Triple Exponential Smoothing Untuk Prediksi Harga Emas: Studi Kasus Pada PT. Aneka Tambang. Journal of Information System Management, 6(2), 118–123. https://doi.org/10.24076/joism.2025v6i2.1793

Rosidah, K., Alfan, A., & Isro’il, A. (2024). Peramalan Tingkat Pengangguran di Kota Lamongan Menggunakan Metode Pemulusan Eksponensial Ganda Brown. Mathunesa: Jurnal Ilmiah Matematika, 12(3), 569–578. https://doi.org/10.26740/mathunesa.v12n3.p569-578

Sari, D. R. P. (2022). Penerapan Metode Double Exponential Smoothing Pada Data Inflasi Bulanan Tahun 2021. Jurnal Matematika Dan Statistika Serta Aplikasinya, 10(2), 26–31. https://doi.org/10.24252/msa.v10i2.27272

Sinurat, R. P. P. (2023). Analisis Faktor-Faktor Penyebab Kemiskinan Sebagai Upaya Penanggulangan Kemiskinan di Indonesia. Jurnal Registratie, 5(2), 87–103. https://doi.org/10.33701/jurnalregistratie.v5i2.3554

Syakhroni, A., & Maulana, M. S. J. (2023). Peramalan Permintaan Gula Bulk dan Gula Kemas Menggunakan Metode Winter’s Exponential Smoothing di PT. XYZ. Jurnal Logistica, 2(1), 1–6. https://journal.iteba.ac.id/index.php/logistica/article/view/157

Syuhada, E. G., & Setyawan, M. Y. H. (2023). Analisis Komparasi Metode Prophet dan Metode Exponential Smoothing dalam Peramalan Jumlah Pengangguran di Jawa Barat: Systematic Literature Review. Jurnal Mahasiswa Teknik Informatika, 7(2), 1369–1377. https://doi.org/10.36040/jati.v7i2.6827

Wawo, R. Y., Salaki, D. T., Komalig, H. A. H., Hatidja, D., & Marline Sofiana Paendong, T. M. (2025). Perbandingan Metode Triple Exponential Smoothing Additive dan Additive Parameter Damped untuk Peramalan Indeks Harga Konsumen. Euler: Jurnal Ilmiah Matematika, Sains Dan Teknologi, 13(1), 77–83. https://doi.org/10.37905/euler.v13i1.30928

Reports

Badan Pusat Statistik Lampung Tengah. (2023). Kondisi Kemiskinan Lampung Tengah Tahun 2023. https://lampungtengahkab.bps.go.id/id/news/2023/10/18/123/kondisi-kemiskinan-lampung-tengah-tahun-2023--bukadatayuk-.html

Badan Pusat Statistik Republik Indonesia. (2023). Indikator Kesejahteraan Rakyat 2023.