Dengue Modeling Using Multiple Regression in Bandar Lampung Province, Indonesia
Main Article Content
Abstract
Dengue Hemorrhagic Fever remains a significant global concern, with its complex distribution influenced by geographic and demographic factors. Indonesia, particularly the city of Bandar Lampung, is an endemic area for Dengue Hemorrhagic Fever. Factors such as population density, area, and geographical coordinates are believed to influence the spread of the disease. Bandar Lampung, which has the highest population density in the region, has recorded a high population growth rate. In this context, multiple linear regression analysis is an effective approach to understanding the relationship between dependent and independent variables, including population density, area, longitude, and latitude. These factors play a crucial role in the transmission of the dengue virus, with high population density increasing human-mosquito interactions. This analysis is expected to provide comprehensive insights to design more effective and targeted intervention strategies for preventing and controlling the spread of Dengue Hemorrhagic Fever at both geographic and demographic levels
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Journals
Anwar, A., & Ariati, J. (2014). Model Prediksi Kejadian Demam Berdarah Dengue (DBD) Berdasarkan Faktor Iklim di Kota Bogor, Jawa Barat. Buletin Penelitian Kesehatan, 42(4), 249–256. https://doi.org/10.22435/bpk.v42i4 Des.3663.249-256
Bangdiwala, S. I. (2018). Regression: Multiple Linear. International Journal of Injury Control and Safety Promotion, 25(2), 232–236. https://doi.org/10.1080/17457300.2018.1452336
Beyer, M., Lenz, R., & Kuhn, K. A. (2006). Health Information Systems. Information Technology, 48(1), 6–11. https://doi.org/10.1524/itit.2006.48.1.6
Daoud, J. I. (2017). Multicollinearity and Regression Analysis. Journal of Physics: Conference Series, 949, 012009. https://doi.org/10.1088/1742-6596/949/1/012009
Ispriyanti, D., Prahutama, A., & Taryono, A. P. (2018). Modelling Space of Spread Dengue Hemorrhagic Fever (DHF) in Central Java Use Spatial Durbin Model. Journal of Physics: Conference Series, 1025, 012112. https://doi.org/10.1088/1742-6596/1025/1/012112
Jayanti, N. M. S., Sumarjaya, I. W., & Susilawati, M. (2017). Pemodelan Penyebaran Kasus Demam Berdarah Dengue (DBD) di Kota Denpasar dengan Metode Spatial Autoregressive (SAR). E-Jurnal Matematika, 6(1), 37–46. https://ojs.unud.ac.id/index.php/mtk/article/view/27173
Kim, J. H. (2019). Multicollinearity and Misleading Statistical Results. Korean Journal of Anesthesiology, 72(6), 558–569. https://doi.org/10.4097/kja.19087
Kim, S.-W., Park, H.-Y., Jung, H., Lee, J., & Lim, K. (2021). Estimation of Health-Related Physical Fitness Using Multiple Linear Regression in Korean Adults: National Fitness Award 2015–2019. Front Physiol, 12, 668055. https://doi.org/10.3389/fphys.2021.668055
Kusuma, A. P., & Sukendra, D. M. (2016). Analisis Spasial Kejadian Demam Berdarah Dengue Berdasarkan Kepadatan Penduduk. Unnes Journal of Public Health, 5(1), 48–56. https://doi.org/10.15294/ujph.v5i1.9703
Lembang, F. K., Nara, E. A., Rumlawang, F. Y., & Talakua, M. W. (2019). Pemodelan Pengaruh Iklim Terhadap Angka Kejadian Demam Berdarah di Kota Ambon Menggunakan Metode Regresi Generalized Poisson. Indonesian Journal of Statistics and Its Applications, 3(3), 341–351.
Mardiatmoko, G.-. (2020). Pentingnya Uji Asumsi Klasik Pada Analisis Regresi Linier Berganda. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 14(3), 333–342. https://doi.org/10.30598/barekengvol14iss3pp333-342
Nurdiansyah, D., & Sulistiawan, A. (2023). Pemodelan Jumlah Kasus Demam Berdarah dengue Dengan Menggunakan Model Autoregressive Distributed Lag. Jurnal Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(3), 1965–1977. https://doi.org/10.46306/lb.v4i3.526
Rahayu K, D., Winahju, W. S., & Mukarromah, A. (2012). Pemodelan Pengaruh Iklim Terhadap Angka Kejadian Demam Berdarah Dengue di Surabaya. Jurnal Sains Dan Seni ITS, 1(1), 69–74. https://doi.org/10.12962/j23373520.v1i1.594
Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1
Uyanık, G. K., & Güler, N. (2013). A Study on Multiple Linear Regression Analysis. Procedia: Social and Behavioral Sciences, 106, 234–240. https://doi.org/10.1016/j.sbspro.2013.12.027
Zheng, B., Lin, X., Yin, D., & Qi, X. (2023). Does Tobler’s First Law of Geography Apply to Internet Attention? a Case Study of the Asian Elephant Northern Migration Event. Plos One, 18(3), e0282474. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282474
Books
Draper, N. R., & Smith, H. (1998). Applied Regression Analysis (3rd ed.). John Wiley & amp; Sons, Inc. https://doi.org/10.1002/9781118625590
Rawlings, J. O., Pantula, S. G., & Dickey, D. A. (1998). Applied Regression Analysis: A Research Tool (2nd ed.). Springer.
Rifai, M., Yudianingsih, G., Sudarti, S., Indraswari, H. S., Qomariyah, F., Yosep, Y., Damayanti, K. N., Trianda, R., Wandita, D. T., Simamora, I. P. M., & Sihaloho, M. E. I. (2022). Profil Gender Dan Anak Provinsi Lampung Tahun 2022.
Waters, N. (2017). Tobler’s First Law of Geography. In International Encyclopedia of Geography: People, the Earth, Environment and Technology. Wiley. https://doi.org/10.1002/9781118786352.wbieg1011
Report
Bappeda Kota Kupang. (2013). Kepadatan Penduduk Per Km2.